Solution: Maximum Force Between Bar and Block
1. Initial Equilibrium
Initially, the bar of mass $M$ rests on the vertical spring.
Compression $x_i = \frac{Mg}{k}$.
2. Motion Analysis
When block $m$ is placed on $M$ and released, the system oscillates.
New Equilibrium Position: The combined mass $(M+m)$ would rest at a compression $x_f = \frac{(M+m)g}{k}$.
Amplitude of Oscillation ($A$): The motion starts from the position $x_i$ with zero velocity. The distance between the starting point and the new equilibrium is the amplitude.
$$ A = x_f – x_i = \frac{(M+m)g}{k} – \frac{Mg}{k} = \frac{mg}{k} $$
3. Force Calculation
We need the maximum force the bar $M$ exerts on block $m$ (Normal Force $N$). Considering the Free Body Diagram of block $m$:
- Forces: $N$ (Up), $mg$ (Down).
- Equation: $N – mg = ma \implies N = m(g + a)$.
Calculating $a_{max}$: $$ a_{max} = \omega^2 A $$ Where $\omega^2 = \frac{k}{M_{total}} = \frac{k}{M+m}$. $$ a_{max} = \left( \frac{k}{M+m} \right) \cdot \left( \frac{mg}{k} \right) = \frac{mg}{M+m} $$
4. Final Result
Substitute $a_{max}$ into the normal force equation:
$$ N_{max} = m \left( g + \frac{mg}{M+m} \right) $$ $$ N_{max} = mg \left( 1 + \frac{m}{M+m} \right) $$ $$ N_{max} = mg \left( \frac{M+m+m}{M+m} \right) $$ $$ N_{max} = mg \left( \frac{M+2m}{M+m} \right) $$