Solution: Falling Rod with Beads
1. Derivation of Time Dependence ($t \propto 1/\sqrt{K}$)
Consider a rigid body pivoted at the bottom, falling under gravity. The equation of motion is given by Torque = $I \alpha$.
Let $\phi$ be the angle with the vertical at any instant (varying from initial $\theta$ to $90^\circ$). The restoring torque due to gravity is proportional to $\sin\phi$.
$$ \tau = I \alpha \implies \tau_{eff} \sin\phi = I \frac{d^2\phi}{dt^2} $$
$$ \frac{d^2\phi}{dt^2} = \left( \frac{\tau_{eff}}{I} \right) \sin\phi $$
Let $K = \frac{\tau_{eff}}{I}$. Then:
$$ \ddot{\phi} = K \sin\phi $$
To integrate, we multiply both sides by $2\dot{\phi}$:
$$ 2\dot{\phi} \frac{d\dot{\phi}}{dt} = 2K \sin\phi \frac{d\phi}{dt} $$
$$ \int d(\dot{\phi}^2) = 2K \int \sin\phi \, d\phi $$
Assuming the rod starts from rest at angle $\theta$:
$$ \dot{\phi}^2 = 2K (\cos\theta – \cos\phi) $$
$$ \frac{d\phi}{dt} = \sqrt{2K} \sqrt{\cos\theta – \cos\phi} $$
Separating variables to find time $t$:
$$ dt = \frac{1}{\sqrt{2K}} \frac{d\phi}{\sqrt{\cos\theta – \cos\phi}} $$
Integrating from release angle $\theta$ to the ground ($\phi = \pi/2$):
$$ t = \frac{1}{\sqrt{2K}} \int_{\theta}^{\pi/2} \frac{d\phi}{\sqrt{\cos\theta – \cos\phi}} $$
The integral term depends only on the geometry (angles) and is constant for both cases. Therefore:
$$ t \propto \frac{1}{\sqrt{K}} $$
2. Calculating Factor K for Both Cases
Case 1: Single Mass $m$ at length $l$
Torque about pivot: $\tau_1 = mgl$. Moment of Inertia: $I_1 = ml^2$.
$$ K_1 = \frac{mgl}{ml^2} = \frac{g}{l} $$
Case 2: Added Mass $\eta m$ at length $l/2$
Total Torque (coefficient of $\sin\phi$):
$$ \tau_2 = mgl + (\eta m)g\left(\frac{l}{2}\right) = mgl \left(1 + \frac{\eta}{2}\right) $$
Total Moment of Inertia:
$$ I_2 = ml^2 + (\eta m)\left(\frac{l}{2}\right)^2 = ml^2 \left(1 + \frac{\eta}{4}\right) $$
Calculating $K_2$:
$$ K_2 = \frac{\tau_2}{I_2} = \frac{mgl(1 + \eta/2)}{ml^2(1 + \eta/4)} = \frac{g}{l} \left( \frac{1 + \eta/2}{1 + \eta/4} \right) $$
3. Comparison of Times
Using the relation $t \propto 1/\sqrt{K}$: $$ \frac{t_{new}}{t_0} = \sqrt{\frac{K_1}{K_2}} $$ Substitute $K_1$ and $K_2$: $$ \frac{t_{new}}{t_0} = \sqrt{ \frac{g/l}{\frac{g}{l} \left( \frac{1 + \eta/2}{1 + \eta/4} \right)} } = \sqrt{ \frac{1 + \eta/4}{1 + \eta/2} } $$ Simplifying the fraction: $$ \frac{1 + \eta/4}{1 + \eta/2} = \frac{(4+\eta)/4}{(2+\eta)/2} = \frac{4+\eta}{2(2+\eta)} $$ $$ t_{new} = t_0 \sqrt{\frac{\eta+4}{2(\eta+2)}} $$
