MEC O14

Solution Question 14

Solution for Question 14

Step 1: Analyzing Linear Motion (No Magnetic Field)

The equation of motion is $m\frac{dv}{dt} = -bv$.

Rewriting in terms of distance $s$: $mv\frac{dv}{ds} = -bv \implies m dv = -b ds$.

Integrating from initial velocity $v_0$ to stop ($0$):

$$ \int_{v_0}^{0} m \, dv = \int_{0}^{10} -b \, ds $$ $$ -mv_0 = -b(10) \implies mv_0 = 10b \quad \text{…(Equation 1)} $$

Step 2: Vector Equation with Magnetic Field

Equation of motion: $m\frac{d\vec{v}}{dt} = q(\vec{v} \times \vec{B}) – b\vec{v}$.

Integrate both sides with respect to time ($dt$):

$$ \int m \, d\vec{v} = \int q(\vec{v} \times \vec{B}) \, dt – \int b\vec{v} \, dt $$

Since $\int \vec{v} \, dt = \vec{S}$ (displacement vector):

$$ m(\vec{v}_f – \vec{v}_i) = q(\vec{S} \times \vec{B}) – b\vec{S} $$

The particle stops, so $\vec{v}_f = 0$. Let initial velocity be $\vec{v}_i = v_0 \hat{i}$.

$$ -m v_0 \hat{i} = q(\vec{S} \times \vec{B}) – b\vec{S} $$

Rearranging:

$$ m v_0 \hat{i} = b\vec{S} – q(\vec{S} \times \vec{B}) $$
Vector Addition Triangle (Right Angled) mv₀ bS q(S x B) * Note: S is perpendicular to S x B

Step 3: Solving for B

The vector $\vec{S}$ is perpendicular to $\vec{S} \times \vec{B}$. Thus, the magnitudes form a Pythagorean triplet:

$$ (mv_0)^2 = (bS)^2 + |q(\vec{S} \times \vec{B})|^2 $$

Since $\vec{v}$ is in the plane and $\vec{B}$ is perpendicular, $|\vec{S} \times \vec{B}| = SB$.

$$ (mv_0)^2 = b^2 S^2 + q^2 S^2 B^2 $$

Substitute known values: $mv_0 = 10b$ and $S = 6$.

$$ (10b)^2 = b^2(6)^2 + q^2(6)^2 B^2 $$ $$ 100b^2 = 36b^2 + 36q^2 B^2 $$ $$ 64b^2 = 36q^2 B^2 $$

Taking square root:

$$ 8b = 6qB \implies B = \frac{8b}{6q} = \frac{4b}{3q} $$

Correct Answer: (a)

$\frac{4b}{3q}$