Solution: Magnetic Moment and Field of a Rotating Sphere
Step 1: Charge Setup
Since the sphere is a conductor, charge $Q$ resides entirely on the surface. Given potential $V$, the total charge is:
$$ Q = 4\pi\varepsilon_0 R V $$
The surface charge density is $\sigma = \frac{Q}{4\pi R^2}$.
We consider an elemental ring on the surface at polar angle $\theta$ with width $R d\theta$.
Radius of the ring: $r = R \sin\theta$.
Area of the ring strip: $dA = (2\pi r)(R d\theta) = 2\pi R^2 \sin\theta d\theta$.
Charge on the ring: $dq = \sigma dA$.
Equivalent Current: $dI = \frac{dq}{T} = dq \left(\frac{\omega}{2\pi}\right)$.
Step 2: Magnetic Field Calculation (Integration)
We calculate the magnetic field $dB$ at the center of the sphere due to this rotating ring using the Biot-Savart law for a current loop on its axis.
The field on the axis of a current loop of radius $r$ at a distance $z$ from the loop center is:
$$ B_{axis} = \frac{\mu_0 I r^2}{2(r^2 + z^2)^{3/2}} $$
Here, the distance from the ring wire to the center of the sphere is simply the sphere radius $\sqrt{r^2 + z^2} = R$.
Substituting our values:
$$ dB = \frac{\mu_0 (dI) (R \sin\theta)^2}{2 R^3} = \frac{\mu_0 dI \sin^2\theta}{2 R} $$
Now, substitute $dI$:
$$ dI = \frac{\omega}{2\pi} (\sigma 2\pi R^2 \sin\theta d\theta) = \sigma \omega R^2 \sin\theta d\theta $$
Substitute $dI$ into the $dB$ equation:
$$ dB = \frac{\mu_0}{2R} (\sigma \omega R^2 \sin\theta d\theta) \sin^2\theta $$
$$ dB = \frac{\mu_0 \sigma \omega R}{2} \sin^3\theta d\theta $$
Integrate from $\theta = 0$ to $\pi$:
$$ B = \frac{\mu_0 \sigma \omega R}{2} \int_{0}^{\pi} \sin^3\theta \, d\theta $$
Using the standard integral $\int_{0}^{\pi} \sin^3\theta \, d\theta = \frac{4}{3}$:
$$ B = \frac{\mu_0 \sigma \omega R}{2} \cdot \frac{4}{3} = \frac{2}{3} \mu_0 \sigma \omega R $$
Finally, substitute $\sigma = \frac{Q}{4\pi R^2}$ and $Q = 4\pi\varepsilon_0 R V$:
$$ B = \frac{2}{3} \mu_0 \omega R \left( \frac{4\pi\varepsilon_0 R V}{4\pi R^2} \right) = \frac{2}{3} \mu_0 \omega R \left( \frac{\varepsilon_0 V}{R} \right) $$
Step 3: Magnetic Moment Calculation
The magnetic moment $dm$ of the elemental loop is Area $\times$ Current:
$$ dm = (\pi r^2) dI = \pi (R \sin\theta)^2 (\sigma \omega R^2 \sin\theta d\theta) $$
$$ dm = \pi \sigma \omega R^4 \sin^3\theta d\theta $$
Integrating from $0$ to $\pi$:
$$ m = \pi \sigma \omega R^4 \left( \frac{4}{3} \right) = \frac{4\pi}{3} \sigma \omega R^4 $$
Substitute $\sigma = \frac{Q}{4\pi R^2}$:
$$ m = \frac{4\pi}{3} \omega R^4 \left( \frac{Q}{4\pi R^2} \right) = \frac{1}{3} Q R^2 \omega $$
Using $Q = 4\pi\varepsilon_0 R V$:
For systems where mass and charge are distributed identically (both on the surface in this case), the magnetic moment $\vec{m}$ relates to angular momentum $\vec{L}$ via the gyromagnetic ratio: $$ \vec{m} = \frac{Q}{2M} \vec{L} $$ For a spherical shell (hollow sphere), the moment of inertia is $I = \frac{2}{3}MR^2$. Therefore: $$ L = I\omega = \frac{2}{3}MR^2\omega $$ Substituting this into the ratio: $$ m = \frac{Q}{2M} \left( \frac{2}{3}MR^2\omega \right) = \frac{1}{3}QR^2\omega $$ This confirms the result obtained by integration.
