MEC BYU 3

Solution: Coaxial Rotating Cylindrical Shells

Shell 2 (R₂, σ₂, ω₂) Shell 1 (R₁, σ₁, ω₁) R₂ B₁ + B₂ B₂ 0

Figure 3: Cross-section of coaxial shells. The magnetic field behaves like superposed solenoids.

(a) Magnetic Induction B

Each rotating charged shell behaves like a long solenoid. The effective surface current density (current per unit length) for a shell of radius $R$, charge density $\sigma$, and angular velocity $\omega$ is:

$$ K = \sigma R \omega $$

The magnetic field produced by such a shell is:

  • Inside the shell: $B = \mu_0 K = \mu_0 \sigma R \omega$
  • Outside the shell: $B = 0$

Using the principle of superposition:

1. Region $r < R_1$ (Inside both shells):
Both shells contribute to the magnetic field.

$$ B_{net} = B_{inner} + B_{outer} = \mu_0 (\sigma_1 R_1 \omega_1) + \mu_0 (\sigma_2 R_2 \omega_2) $$ $$ B = \mu_0 (\sigma_1 \omega_1 R_1 + \sigma_2 \omega_2 R_2) $$

2. Region $R_1 < r < R_2$ (Between shells):
We are outside the inner shell (so $B_{inner} = 0$) but inside the outer shell.

$$ B = \mu_0 \sigma_2 \omega_2 R_2 $$

3. Region $r > R_2$ (Outside both):
$$ B = 0 $$

$$ B(r) = \begin{cases} \mu_0 (\sigma_1 \omega_1 R_1 + \sigma_2 \omega_2 R_2) & r < R_1 \\ \mu_0 \sigma_2 \omega_2 R_2 & R_1 < r < R_2 \\ 0 & r > R_2 \end{cases} $$
(b) Magnetic Pressure

Magnetic pressure is the force per unit area exerted on the current-carrying surface by the magnetic field. The force on a surface current $K$ is $d\vec{F} = \vec{K} \times \vec{B}_{local} dA$.

Crucially, the field $\vec{B}_{local}$ acting on the surface itself is the average of the field just inside and just outside that surface.

Pressure on Outer Shell ($p_2$):

  • Field inside: $B_{in} = \mu_0 \sigma_2 \omega_2 R_2$ (contribution from shell 2 only, as shell 1 field is zero here).
  • Field outside: $B_{out} = 0$.
  • Average Field: $B_{avg} = \frac{1}{2} \mu_0 \sigma_2 \omega_2 R_2$.
  • Current density: $K_2 = \sigma_2 R_2 \omega_2$.
$$ p_2 = K_2 \cdot B_{avg} = (\sigma_2 \omega_2 R_2) \cdot \left( \frac{\mu_0 \sigma_2 \omega_2 R_2}{2} \right) = \frac{\mu_0 \sigma_2^2 \omega_2^2 R_2^2}{2} $$

Pressure on Inner Shell ($p_1$):

  • Field just inside ($r < R_1$): $B_{total} = \mu_0 K_1 + \mu_0 K_2$.
  • Field just outside ($r > R_1$): $B_{total} = 0 + \mu_0 K_2$.
  • Note: The field due to shell 2 ($B_2 = \mu_0 K_2$) is constant across the boundary of shell 1. The field due to shell 1 jumps from $\mu_0 K_1$ to 0.
  • Average Field acting on Shell 1: $B_{avg} = B_2 + \frac{B_1}{2} = \mu_0 K_2 + \frac{\mu_0 K_1}{2}$.
$$ p_1 = K_1 \left( \mu_0 K_2 + \frac{\mu_0 K_1}{2} \right) $$ $$ p_1 = \mu_0 K_1 \left( K_2 + \frac{K_1}{2} \right) $$

Substituting $K_1 = \sigma_1 \omega_1 R_1$ and $K_2 = \sigma_2 \omega_2 R_2$:

$$ p_1 = \mu_0 \sigma_1 \omega_1 R_1 \left( \sigma_2 \omega_2 R_2 + \frac{\sigma_1 \omega_1 R_1}{2} \right) $$