KINEMATICS BYU 35

Physics Solution 35 – Corrected

Solution to Question 35

Boat $v_b$ Rope $l$ $\theta$ Skier $v_s$ $\phi$

1. Constraint Relation

The rope is inextensible, meaning the length $l$ remains constant. Therefore, the velocity components of both the boat and the skier along the direction of the rope must be identical.

  • Boat: Velocity is horizontal. The angle with the rope is $\theta$. Component along rope = $v_b \cos\theta$.
  • Skier: Velocity is $v_s$. The angle with the rope is $\phi$. Component along rope = $v_s \cos\phi$.
$$ v_b \cos\theta = v_s \cos\phi $$ $$ v_s = v_b \frac{\cos\theta}{\cos\phi} $$

2. Angular Velocity Calculation

The angular velocity $\omega$ of the rope depends on the relative velocity component perpendicular to the rope. This relative velocity causes the rope to rotate.

Components perpendicular to the rope:

  • Boat: $v_{b\perp} = v_b \sin\theta$ (Rotates rope down/clockwise)
  • Skier: $v_{s\perp} = v_s \sin\phi$ (Rotates rope up/counter-clockwise relative to boat)

The net relative perpendicular velocity is the difference (taking into account the direction that increases the angle):

$$ v_{rel,\perp} = v_s \sin\phi – v_b \sin\theta $$

Angular velocity is linear velocity divided by radius ($l$):

$$ \omega = \frac{v_s \sin\phi – v_b \sin\theta}{l} $$ Substituting $v_s$: $$ \omega = \frac{1}{l} \left( v_b \frac{\cos\theta}{\cos\phi} \sin\phi – v_b \sin\theta \right) $$ $$ \omega = \frac{v_b}{l \cos\phi} ( \sin\phi \cos\theta – \cos\phi \sin\theta ) $$ Using $\sin(A-B) = \sin A \cos B – \cos A \sin B$: $$ \omega = \frac{v_b \sin(\phi – \theta)}{l \cos\phi} $$

3. Numerical Solution

Given: $v_b = 20$ m/s, $l = 10$ m, $\theta = 30^\circ$, $\phi = 60^\circ$.

Speed of Skier ($v_s$):

$$ v_s = 20 \times \frac{\cos 30^\circ}{\cos 60^\circ} = 20 \times \frac{\sqrt{3}/2}{1/2} = 20\sqrt{3} \text{ m/s} $$

Angular Velocity ($\omega$):

$$ \omega = \frac{20 \sin(60^\circ – 30^\circ)}{10 \cos 60^\circ} = \frac{20 \sin 30^\circ}{5} $$ $$ \omega = \frac{20 (0.5)}{5} = \frac{10}{5} = 2 \text{ rad/s} $$