Solution: Falling Disc in Magnetic Field
1. Equivalent CapacitorAs the disc falls with velocity \(v\) in a horizontal magnetic field \(B\), the Lorentz force separates charges across the thickness \(d\) of the disc. The disc acts as a capacitor with area \(A = \pi r^2\) and separation \(d\). The induced potential difference is \(V = vBd\). The charge stored is: $$ q = CV = \left( \frac{\varepsilon_0 \pi r^2}{d} \right) (vBd) = \varepsilon_0 \pi r^2 B v $$
2. Charging CurrentThe charging current \(i\) flows as velocity increases: $$ i = \frac{dq}{dt} = \varepsilon_0 \pi r^2 B \frac{dv}{dt} = \varepsilon_0 \pi r^2 B a $$
3. Magnetic Force and AccelerationThis current flows across the thickness of the disc, perpendicular to \(B\). It experiences an upward magnetic force \(F_m = i d B\): $$ F_m = (\varepsilon_0 \pi r^2 B a) d B = \varepsilon_0 \pi r^2 d B^2 a $$
Applying Newton’s Second Law (\(mg – F_m = ma\)): $$ mg – \varepsilon_0 \pi r^2 d B^2 a = ma $$ $$ mg = a(m + \varepsilon_0 \pi r^2 d B^2) $$
