ELECTROSTATICS BYU 53

Solution: Question 53

Solution to Question 53

Physics Principle: Electrostatic Potential Profile and Energy Conservation.

System Setup:
\(+Q\) sphere centered at \(x=0\).
\(-Q\) sphere centered at \(x=-x_0\).
Bead \(+q\) travels from \(-\infty\).
Stopping region: Inside \(+Q\) and Outside \(-Q\).
Range: \( R-x_0 < x < R \).

1. Stopping Position \(x\):
At the stopping point, the initial kinetic energy is fully converted to potential energy. $$ \frac{1}{2}m u^2 = q V(x) $$ The potential \(V(x)\) in the stopping region is the sum of the constant potential inside the positive sphere and the variable potential outside the negative sphere: $$ V(x) = \frac{kQ}{R} – \frac{kQ}{x+x_0} $$ Energy Balance: $$ \frac{m u^2}{2q} = \frac{Q}{4\pi\epsilon_0} \left( \frac{1}{R} – \frac{1}{x+x_0} \right) $$ Solving for \(x\): $$ x = \frac{R}{1 – \frac{2\pi\epsilon_0 m u^2 R}{qQ}} – x_0 $$

2. Range of Initial Velocity:
The bead must stop before it exits the positive sphere at \(x=R\).
Potential at \(x=R\): \( V(R) = \frac{kQ}{R} – \frac{kQ}{R+x_0} \).
Condition: \( \frac{1}{2} m u^2 < q V(R) \). $$ \frac{1}{2} m u^2 < \frac{qQ}{4\pi\epsilon_0} \left( \frac{1}{R} - \frac{1}{R+x_0} \right) $$ $$ u < \sqrt{ \frac{qQ}{2\pi\epsilon_0 m} \left( \frac{x_0}{R(R+x_0)} \right) } $$

Stopping position: \( x = \frac{R}{1 – \alpha R} – x_0 \quad \text{where } \alpha = \frac{2\pi\epsilon_0 m u^2}{qQ} \)
Velocity Range: \( u < \sqrt{ \frac{qQ x_0}{2\pi\epsilon_0 m R (R+x_0)} } \)