ELECTROSTATICS BYU 43

Solution: Question 43

Solution to Question 43

Physics Principle: Conservation of Momentum and Energy in Electrostatics.

Step 1: Initial State Analysis

Initially, the tension \(T\) in the thread counteracts the electrostatic repulsion between the two charges \(q_1\) and \(q_2\) separated by distance \(l\). $$T = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{l^2} \implies \frac{q_1 q_2}{4\pi\epsilon_0} = T l^2$$

Step 2: Conservation of Momentum

When the thread is cut, the balls fly apart. Since the net external force on the system is zero, momentum is conserved.
The first ball (\(m_1\)) has momentum \(p\).
The second ball (\(m_2\)) must have momentum \(-p\) (magnitude \(p\)).

Step 3: Conservation of Energy

The system loses Electrostatic Potential Energy and gains Kinetic Energy. Let the new distance be \(r\). $$\Delta PE = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{l} – \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$ $$KE_{total} = \frac{p^2}{2m_1} + \frac{p^2}{2m_2} = \frac{p^2 (m_1+m_2)}{2 m_1 m_2}$$

Equating \(\Delta PE\) to \(KE_{total}\): $$\frac{q_1 q_2}{4\pi\epsilon_0} \left( \frac{1}{l} – \frac{1}{r} \right) = \frac{p^2 (m_1+m_2)}{2 m_1 m_2}$$ Substitute \(\frac{q_1 q_2}{4\pi\epsilon_0} = T l^2\): $$T l^2 \left( \frac{r-l}{lr} \right) = \frac{p^2 (m_1+m_2)}{2 m_1 m_2}$$ $$T l \left( 1 – \frac{l}{r} \right) = \frac{p^2 (m_1+m_2)}{2 m_1 m_2}$$

Solving for \(r\): $$1 – \frac{l}{r} = \frac{p^2 (m_1+m_2)}{2 m_1 m_2 T l}$$ $$\frac{l}{r} = 1 – \frac{p^2 (m_1+m_2)}{2 m_1 m_2 T l}$$ $$r = \frac{l}{1 – \frac{p^2 (m_1+m_2)}{2 m_1 m_2 T l}} = \frac{2 m_1 m_2 T l^2}{2 m_1 m_2 T l – p^2 (m_1+m_2)}$$

Separation Distance r: $$r = \frac{2 m_1 m_2 l^2 T}{2 m_1 m_2 l T – p^2 (m_1 + m_2)}$$