WPE BYU 28

Solution 28

Solution to Question 28

Initial (Equilibrium) Final (Lifted) k2 m2 k1 m1 m2 m1 Δh2 Δh1

1. Initial Equilibrium State

Initially, both springs are compressed under the weight of the blocks.

  • Compression in $k_2$: It supports both masses. $$x_2 = \frac{(m_1 + m_2)g}{k_2}$$
  • Compression in $k_1$: It supports mass $m_1$. $$x_1 = \frac{m_1 g}{k_1}$$

2. Final State

The system is lifted until the lower spring $k_2$ is relaxed (force is zero). At this point, Block B is effectively hanging from Block A via spring $k_1$.

  • Since $k_2$ provides no support, $k_1$ must support the weight of $m_2$.
  • Spring $k_1$ is now extended by $x_1’$. $$x_1′ = \frac{m_2 g}{k_1}$$

3. Calculate Height Increments

Rise of Block B ($\Delta h_2$): B moves from compressed position to the natural length position of $k_2$.

$$\Delta h_2 = x_2 = \frac{(m_1 + m_2)g}{k_2}$$

Rise of Block A ($\Delta h_1$): A moves up by the amount B moves, plus the change in length of spring $k_1$ (from compressed $x_1$ to extended $x_1’$).

$$\Delta h_1 = \Delta h_2 + (x_1 + x_1′) = \frac{(m_1 + m_2)g}{k_2} + \left(\frac{m_1 g}{k_1} + \frac{m_2 g}{k_1}\right) = \frac{(m_1 + m_2)g}{k_2} + \frac{(m_1 + m_2)g}{k_1}$$

4. Total Increment in Gravitational Potential Energy

$$\Delta U_g = m_1 g \Delta h_1 + m_2 g \Delta h_2$$ Substitute the values: $$\Delta U_g = m_1 g \left[ \frac{(m_1 + m_2)g}{k_2} + \frac{(m_1 + m_2)g}{k_1} \right] + m_2 g \left[ \frac{(m_1 + m_2)g}{k_2} \right]$$ Factor out common terms: $$\Delta U_g = (m_1+m_2)g \left[ \frac{m_1 g}{k_2} + \frac{m_1 g}{k_1} + \frac{m_2 g}{k_2} \right]$$ $$\Delta U_g = (m_1+m_2)g \left[ \frac{(m_1+m_2)g}{k_2} + \frac{m_1 g}{k_1} \right]$$ Rearranging to match the standard form: $$\Delta U_g = \frac{(m_1+m_2)g^2}{k_1 k_2} \left[ k_1(m_1+m_2) + m_1 k_2 \right]$$