Physics Solution: Disc Collision with Friction
Problem Analysis: We have a head-on collision between a rotating disc and a translating disc. The collision is perfectly inelastic (restitution $e=0$), meaning they do not separate along the normal. Tangentially, friction acts until slipping ceases.
Figure 1: Top-down view of the discs before collision. $x$ is the line of impact, $y$ is the tangent.
Step 1: Normal Direction (x-axis)
The collision is perfectly inelastic ($e=0$), so the final relative velocity along the line of impact is zero. Since the masses are identical ($m$), they will share the linear momentum equally.
Initial Momentum $P_x = mu$. Final Momentum $P_x’ = 2m v_x’$.
$$ v_{1x}’ = v_{2x}’ = \frac{u}{2} $$
Step 2: Tangential Direction (y-axis)
Friction acts to stop the relative slipping. Let $J_y$ be the impulse due to friction exerted on Disc 2 in the $+y$ direction (and on Disc 1 in the $-y$ direction).
Velocities at Contact Point $C$:
- Disc 1 (Right): Center stationary initially. Spin $\omega$. $v_{c1} = \omega r$ (up, $+y$).
- Disc 2 (Left): Moving right. No spin. $v_{c2} = 0$ (in $y$).
- Relative velocity $v_{rel} = \omega r$ (up). Friction opposes this, pushing Disc 1 down ($-y$) and Disc 2 up ($+y$).
Impulse Equations:
For Disc 1 (Force $-J_y$, Torque $-J_y r$):
- $m v_{1y}’ = -J_y \implies v_{1y}’ = -\frac{J_y}{m}$
- $I (\omega_1′ – \omega) = -J_y r \implies \frac{1}{2}mr^2(\omega_1′ – \omega) = -J_y r \implies \omega_1′ = \omega – \frac{2J_y}{mr}$
For Disc 2 (Force $+J_y$, Torque $-J_y r$ due to force at right edge):
- $m v_{2y}’ = J_y \implies v_{2y}’ = \frac{J_y}{m}$
- $I \omega_2′ = -J_y r \implies \omega_2′ = -\frac{2J_y}{mr}$
Step 3: Solving for “No Slip”
Slipping ceases, so tangential velocities at contact match:
$$ v_{c1y}’ = v_{c2y}’ $$
$$ v_{1y}’ + \omega_1′ r = v_{2y}’ – \omega_2′ r $$
Substituting the impulse expressions:
$$ -\frac{J_y}{m} + (\omega – \frac{2J_y}{mr})r = \frac{J_y}{m} – (-\frac{2J_y}{mr})r $$
$$ -\frac{J_y}{m} + \omega r – \frac{2J_y}{m} = \frac{J_y}{m} + \frac{2J_y}{m} $$
$$ \omega r – \frac{3J_y}{m} = \frac{3J_y}{m} \implies \omega r = \frac{6J_y}{m} $$
Therefore, the impulse is $J_y = \frac{m \omega r}{6}$.
Step 4: Final Velocities
Substitute $J_y$ back into the equations:
- $\omega_1′ = \omega – \frac{2}{mr}(\frac{m\omega r}{6}) = \omega – \frac{\omega}{3} = \frac{2\omega}{3}$
- $\omega_2′ = -\frac{2}{mr}(\frac{m\omega r}{6}) = -\frac{\omega}{3}$
- $v_{1y}’ = -\frac{1}{m}(\frac{m\omega r}{6}) = -\frac{\omega r}{6}$
- $v_{2y}’ = \frac{\omega r}{6}$
The speed of the center is $|v| = \sqrt{v_x’^2 + v_y’^2}$:
$$ |v_1| = |v_2| = \sqrt{(\frac{u}{2})^2 + (\frac{\omega r}{6})^2} = \frac{1}{2} \sqrt{u^2 + \frac{\omega^2 r^2}{9}} = \frac{1}{2} \sqrt{u^2 + \left(\frac{\omega r}{3}\right)^2} $$
Final Answer:
Angular velocities:
$$ \omega_1 = \frac{2\omega}{3}, \quad \omega_2 = -\frac{\omega}{3} $$
Speeds of centers:
$$ |\vec{v}_1| = |\vec{v}_2| = \frac{1}{2} \sqrt{u^2 + \left(\frac{\omega r}{3}\right)^2} $$
