RBD CYU 20

Solution to Question 20

Physics Solution: Rotational Dynamics with Air Resistance

dA r dF = p dA ω

Step 1: Calculating the Retarding Torque

Consider a small element of area $dA$ at a distance $r$ from the axis of rotation. The speed of this element is $v = \omega r$. The excess pressure is given by $p = kv = k\omega r$. The force on this element is $dF = p \cdot dA = k\omega r \cdot dA$.

Torque ($d\tau$) on the element about the axis: $$ d\tau = r \cdot dF = r (k\omega r dA) = k\omega r^2 dA $$ Total Torque ($\tau$): $$ \tau = \int d\tau = \int k\omega r^2 dA = k\omega \int r^2 dA $$

The term $\int r^2 dA$ relates to the Moment of Inertia $I$. Since the lamina is uniform with mass $M$ and area $S$, the surface mass density is $\sigma = M/S$. The Moment of Inertia is defined as $I = \int r^2 dm = \int r^2 (\sigma dA) = \sigma \int r^2 dA$. Therefore, $\int r^2 dA = \frac{I}{\sigma} = \frac{I \cdot S}{M}$.

Substituting this back into the torque equation: $$ \tau = k\omega \left( \frac{I S}{M} \right) $$

Step 2: Solving the Equation of Motion

Using Newton’s Second Law for rotation $\tau_{net} = I \alpha$: $$ – \frac{k\omega I S}{M} = I \alpha $$ $$ \alpha = – \frac{kS}{M} \omega $$ Using the chain rule $\alpha = \omega \frac{d\omega}{d\theta}$: $$ \omega \frac{d\omega}{d\theta} = – \frac{kS}{M} \omega $$ $$ d\omega = – \frac{kS}{M} d\theta $$

Step 3: Finding Total Revolutions

Integrate from initial velocity $\omega_0$ to stop ($0$): $$ \int_{\omega_0}^{0} d\omega = – \frac{kS}{M} \int_{0}^{\theta_{total}} d\theta $$ $$ -\omega_0 = – \frac{kS}{M} \theta_{total} $$ $$ \theta_{total} = \frac{M \omega_0}{kS} $$ The number of revolutions $n$ is $\frac{\theta_{total}}{2\pi}$:
$$ n = \frac{M \omega_0}{2 \pi k S} $$