Physics Solution: Explosion Energy and Angles
1. Center of Mass Frame Analysis
Consider the shell of mass $m$ moving with velocity $u$. The explosion separates the shell into two identical fragments ($m/2$ each). The energy $\Delta W$ is converted entirely into the Kinetic Energy of the fragments in the Center of Mass (CM) frame.
Let $v_0$ be the speed of each fragment in the CM frame.
$$KE_{CM} = \frac{1}{2} \left(\frac{m}{2}\right) v_0^2 + \frac{1}{2} \left(\frac{m}{2}\right) v_0^2 = \frac{m}{2} v_0^2$$ $$\frac{m}{2} v_0^2 = \Delta W \Rightarrow v_0 = \sqrt{\frac{2 \Delta W}{m}}$$2. Lab Frame Transformation
In the lab frame, the velocity of the fragments is the vector sum of the CM velocity ($\vec{u}$) and the relative velocity ($\vec{v}_0$).
$$\vec{v}_1 = \vec{u} + \vec{v}_0$$ $$\vec{v}_2 = \vec{u} – \vec{v}_0$$We want to find the maximum angle $\theta$ between vectors $\vec{v}_1$ and $\vec{v}_2$. This occurs when the explosion direction is perpendicular to the initial velocity $\vec{u}$.
3. Calculation of Angle
From the geometry (where $\vec{v}_0 \perp \vec{u}$):
$$\tan(\theta/2) = \frac{v_0}{u}$$Using the double angle identity for cosine:
$$\cos \theta = \frac{1 – \tan^2(\theta/2)}{1 + \tan^2(\theta/2)} = \frac{1 – (v_0/u)^2}{1 + (v_0/u)^2} = \frac{u^2 – v_0^2}{u^2 + v_0^2}$$Substitute $v_0^2 = \frac{2 \Delta W}{m}$:
$$\cos \theta = \frac{u^2 – \frac{2 \Delta W}{m}}{u^2 + \frac{2 \Delta W}{m}} = \frac{m u^2 – 2 \Delta W}{m u^2 + 2 \Delta W}$$