COM O18

Physics Solution: Pseudo Force & Centroidal Frame

Physics Solution: Newton’s Laws in Non-Inertial Frames

Core Principle: Pseudo Force
When observing motion from a non-inertial reference frame (accelerating with $\vec{a}_{frame}$), a pseudo force $\vec{F}_p = -m\vec{a}_{frame}$ must be applied to every particle of mass $m$. The “Centroidal Frame” is attached to the Center of Mass (COM), so $\vec{a}_{frame} = \vec{a}_{cm}$.

Step-by-Step Calculation

1. Identify Parameters

  • Total mass of system: $M = 10 \text{ kg}$
  • Mass of single particle: $m = 2 \text{ kg}$
  • Pseudo force on the particle: $\vec{F}_p = (4\hat{i} – 2\hat{j}) \text{ N}$

2. Determine Acceleration of COM
Using the definition of pseudo force: $$\vec{F}_p = -m \vec{a}_{cm}$$ $$4\hat{i} – 2\hat{j} = -2 \vec{a}_{cm}$$ $$\vec{a}_{cm} = \frac{4\hat{i} – 2\hat{j}}{-2} = -2\hat{i} + 1\hat{j} \text{ m/s}^2$$

3. Calculate Net External Force
Newton’s Second Law for the whole system states that the net external force determines the acceleration of the center of mass. $$\vec{F}_{net} = M \vec{a}_{cm}$$ $$\vec{F}_{net} = 10 \times (-2\hat{i} + 1\hat{j})$$ $$\vec{F}_{net} = (-20\hat{i} + 10\hat{j}) \text{ N}$$

Final Answer: (d) $(-20\hat{i} + 10\hat{j})$ N