Solution to Problem 3
Problem Analysis: Particle P (speed $u$) chases Particle Q (speed $v$, circular path radius $R$). P always stays on the line connecting the center $O$ and Q.
Kinematics of P:
Since P, O, and Q are collinear, P must rotate with the same angular velocity as Q.
$$ \omega = \frac{v}{R} $$
Let $r$ be the distance of P from the center $O$. The velocity of P has two orthogonal components:
Solving for Time:
Isolate $\frac{dr}{dt}$:
$$ \frac{dr}{dt} = \sqrt{u^2 – \frac{v^2 r^2}{R^2}} $$
$$ dt = \frac{dr}{\sqrt{u^2 – \left(\frac{vr}{R}\right)^2}} $$
To find the catch time, we integrate from $r=0$ (center) to $r=R$ (rim).
Let $k = v/R$. The integral becomes: $$ T = \int_0^R \frac{dr}{\sqrt{u^2 – k^2 r^2}} $$ Using the standard integral $\int \frac{dx}{\sqrt{a^2 – x^2}} = \sin^{-1}(x/a)$: To match the form, factor out $k$: $$ \sqrt{u^2 – k^2 r^2} = k \sqrt{\frac{u^2}{k^2} – r^2} $$ $$ T = \frac{1}{k} \left[ \sin^{-1}\left( \frac{r}{u/k} \right) \right]_0^R $$ Substitute $k = v/R$: $$ T = \frac{R}{v} \sin^{-1}\left( \frac{r v}{u R} \right) \Bigg|_0^R $$ $$ T = \frac{R}{v} \sin^{-1}\left( \frac{R v}{u R} \right) = \frac{R}{v} \sin^{-1}\left( \frac{v}{u} \right) $$
Part (b) Calculation:
Given: $v = 4$ m/s, $u = 8$ m/s, $R = 84$ m.
$$ T = \frac{84}{4} \sin^{-1}\left( \frac{4}{8} \right) $$
$$ T = 21 \sin^{-1}(0.5) $$
We know $\sin^{-1}(0.5) = 30^\circ = \frac{\pi}{6}$ radians.
$$ T = 21 \times \frac{\pi}{6} = \frac{7\pi}{2} $$
Using $\pi = \frac{22}{7}$:
$$ T = \frac{7}{2} \times \frac{22}{7} = \frac{22}{2} = 11 \text{ s} $$
Answer: 11 s
