Physics Problem Solution: Q40
Problem Summary
A parallel plate capacitor with plate area $A$ and separation $d$ has a potential difference $V$ maintained across it. Two identical dielectric slabs (thickness $d/3$, relative permittivity $\varepsilon_r$) and one metal slab (thickness $d/3$) are inserted into the gap. We need to find the modulus of the electrostatic force acting on either of the plates.
Step 1: Calculate Equivalent Capacitance
The capacitor is filled with three slabs, each of thickness $t = d/3$.
- Two dielectric slabs with dielectric constant $K = \varepsilon_r$.
- One metal slab. For a metal, the effective dielectric constant is infinite ($K \to \infty$).
Step 2: Determine the Charge on the Plates
The potential difference $V$ is maintained by the battery. The charge $Q$ on the plates is: $$ Q = CV = \left( \frac{3\varepsilon_r \varepsilon_0 A}{2d} \right) V $$
Step 3: Calculate the Force on the Plates
The attractive force $F$ between the plates of a capacitor with charge $Q$ is given by the formula: $$ F = \frac{Q^2}{2\varepsilon_0 A} $$ Substituting the expression for $Q$: $$ F = \frac{1}{2\varepsilon_0 A} \left( \frac{3\varepsilon_r \varepsilon_0 A V}{2d} \right)^2 $$ $$ F = \frac{1}{2\varepsilon_0 A} \cdot \frac{9 \varepsilon_r^2 \varepsilon_0^2 A^2 V^2}{4d^2} $$ $$ F = \frac{9 \varepsilon_0 \varepsilon_r^2 A V^2}{8d^2} $$ Alternatively, this can be written as: $$ F = \frac{1}{2} \varepsilon_0 A \left( \frac{3 \varepsilon_r V}{2d} \right)^2 $$
Final Answer
$$ F = \frac{9 \varepsilon_0 \varepsilon_r^2 A V^2}{8d^2} $$
