PROPERTIES OF MATTER ChYU 2

Solution 2

Problem 2: Rate of Change of Soap Bubble Radius

Diffusion (q) P, V, n_i Radius r, Thickness h n_o

1. Variable Relationships

Pressure: Inside pressure is atmospheric plus excess pressure due to surface tension ($4\sigma/r$ for a bubble with two surfaces).

$$ P = P_0 + \frac{4\sigma}{r} $$

Thickness ($h$): The volume of the soap film material ($V_s$) is constant. $$ V_s = 4\pi r^2 h = 4\pi r_0^2 h_0 \implies h = h_0 \frac{r_0^2}{r^2} $$

Concentration Gradient: Using $n = P/kT$:

$$ n_i – n_o = \frac{1}{kT} (P – P_0) = \frac{1}{kT} \left( \frac{4\sigma}{r} \right) $$

2. Diffusion Equation

The rate of loss of molecules ($N$) is given by flux $q \times \text{Area}$.

$$ \frac{dN}{dt} = -q A = – \left( D \frac{n_i – n_o}{h} \right) 4\pi r^2 $$

Substitute expressions for $(n_i – n_o)$ and $h$:

$$ \frac{dN}{dt} = -D \frac{ \frac{4\sigma}{rkT} }{ h_0 \frac{r_0^2}{r^2} } 4\pi r^2 $$ $$ \frac{dN}{dt} = – \frac{16 \pi \sigma D r^3}{k T h_0 r_0^2} \quad \text{…(Eq 1)} $$

3. Differentiating the Gas Law

From $PV = NkT$, differentiate with respect to time:

$$ \frac{d}{dt} (PV) = \frac{dN}{dt} kT $$ $$ \frac{d}{dt} \left[ \left( P_0 + \frac{4\sigma}{r} \right) \left( \frac{4}{3}\pi r^3 \right) \right] = \frac{dN}{dt} kT $$ $$ \frac{4\pi}{3} \frac{d}{dt} (P_0 r^3 + 4\sigma r^2) = \frac{dN}{dt} kT $$ $$ \frac{4\pi}{3} (3 P_0 r^2 \dot{r} + 8\sigma r \dot{r}) = \frac{dN}{dt} kT $$ $$ 4\pi r \dot{r} \left( P_0 r + \frac{8\sigma}{3} \right) = \frac{dN}{dt} kT \quad \text{…(Eq 2)} $$

4. Final Solution

Equate Eq 1 and Eq 2 (solve for $\dot{r} = dr/dt$):

$$ 4\pi r \dot{r} \left( \frac{3 P_0 r + 8\sigma}{3} \right) = \left( – \frac{16 \pi \sigma D r^3}{k T h_0 r_0^2} \right) kT $$ $$ 4\pi r \dot{r} \left( \frac{3 P_0 r + 8\sigma}{3} \right) = – \frac{16 \pi \sigma D r^3}{h_0 r_0^2} $$

Cancel common terms ($4\pi r$):

$$ \dot{r} \left( \frac{3 P_0 r + 8\sigma}{3} \right) = – \frac{4 \sigma D r^2}{h_0 r_0^2} $$ $$ \frac{dr}{dt} = – \frac{12 \sigma D r^2}{h_0 r_0^2 (3 P_0 r + 8\sigma)} $$
Expression: $$ \frac{dr}{dt} = – \frac{12 \sigma D}{h_0 r_0^2} \left( \frac{r^2}{3 P_0 r + 8\sigma} \right) $$