Solution 4
Analysis:
We are launching a satellite of mass $m$ from the surface of the Earth (Radius $R$) to a circular orbit of radius $r$.
- Initial State (Surface): $E_i = U_i + K_i = -\frac{GMm}{R} + 0$ (ignoring Earth’s rotation).
- Final State (Orbit $r$): Velocity $v = \sqrt{\frac{GM}{r}}$. Kinetic Energy $K = \frac{GMm}{2r}$. Potential Energy $U_f = -\frac{GMm}{r}$. Total Energy $E_f = -\frac{GMm}{2r}$.
Work Done ($W$):
The work done by the rocket is the change in total energy:
$$ W = E_f – E_i = -\frac{GMm}{2r} – \left( -\frac{GMm}{R} \right) = \frac{GMm}{R} – \frac{GMm}{2r} $$We need a relationship between Kinetic Energy ($K$) and Work ($W$).
We know $K = \frac{GMm}{2r}$. Substituting this into the expression for $W$:
$$ W = \frac{GMm}{R} – K $$Using $GMm/R = mgR$ (since $g = GM/R^2$):
$$ W = mgR – K \quad \Rightarrow \quad K = -W + mgR $$Graph Limits:
- Lowest Orbit ($r=R$): $$ K_{max} = \frac{mgR}{2} $$ $$ W = mgR – \frac{mgR}{2} = \frac{mgR}{2} $$ Point: $(mgR/2, mgR/2)$
- Highest Orbit ($r \to \infty$): $$ K_{min} \to 0 $$ $$ W = mgR – 0 = mgR $$ Point: $(mgR, 0)$
The graph is a straight line with a negative slope (-1) strictly between these domains.
Result: The graph is a linear segment from $(W=\frac{mgR}{2}, K=\frac{mgR}{2})$ to $(W=mgR, K=0)$.
