EMI BYU 7

Solution 7: Vibrating Wire

7. EMF in Vibrating Wire

Step 1: Wire Equation

The wire of length $l$ vibrating in its fundamental mode has the displacement equation:

$$ y(x,t) = a \sin\left(\frac{\pi x}{l}\right) \sin(2\pi \nu t) $$

The transverse velocity is $v_y = \frac{\partial y}{\partial t}$:

$$ v_y = 2\pi \nu a \sin\left(\frac{\pi x}{l}\right) \cos(2\pi \nu t) $$

Step 2: Motional EMF Integral

The motional EMF in a segment $dx$ is $d\mathcal{E} = v_y B dx$. Total EMF is the integral over the length.

$$ \mathcal{E} = \int_{0}^{l} v_y B \, dx = B (2\pi \nu a \cos(2\pi \nu t)) \int_{0}^{l} \sin\left(\frac{\pi x}{l}\right) dx $$

Step 3: Solving the Integral

$$ \int_{0}^{l} \sin\left(\frac{\pi x}{l}\right) dx = \left[ -\frac{l}{\pi} \cos\left(\frac{\pi x}{l}\right) \right]_0^l = -\frac{l}{\pi} (-1 – 1) = \frac{2l}{\pi} $$

Substitute back:

$$ \mathcal{E} = B (2\pi \nu a \cos(2\pi \nu t)) \left( \frac{2l}{\pi} \right) $$
$$ \mathcal{E} = 4 a \nu B l \cos(2\pi \nu t) $$