EMI BYU 31

Solution 31: Charged Spheres

31. Maximum Current between Spheres

Step 1: System Parameters

The two conducting spheres act as capacitors. Since they are far apart, mutual capacitance is negligible.

$$ C_1 = 4\pi\epsilon_0(3r), \quad C_2 = 4\pi\epsilon_0(r) $$

Initially, $Q_1 = Q$ and $Q_2 = 0$.

Step 2: Condition for Maximum Current

The system is an LC oscillator. Charge flows from the higher potential sphere to the lower one. Maximum current occurs when the potentials equalize (voltage across inductor is zero, so $di/dt = 0$, meaning $i$ is max).

$$ V_1 = V_2 \implies \frac{q_1}{C_1} = \frac{q_2}{C_2} $$

Let $q$ be the charge transferred. $q_1 = Q-q$, $q_2 = q$.

$$ \frac{Q-q}{3r} = \frac{q}{r} \implies Q-q = 3q \implies q = \frac{Q}{4} $$

Step 3: Energy Conservation

Loss in potential energy equals gain in magnetic (kinetic) energy.

$$ U_i = \frac{Q^2}{2C_1} $$ $$ U_f = \frac{(Q-Q/4)^2}{2C_1} + \frac{(Q/4)^2}{2C_2} + \frac{1}{2} L I_{max}^2 $$

Substitute $C_1 = 3C_2$ (let $C_2 = C = 4\pi\epsilon_0 r$):

$$ \frac{Q^2}{6C} = \frac{(3Q/4)^2}{6C} + \frac{(Q/4)^2}{2C} + \frac{1}{2} L I_{max}^2 $$ $$ \frac{Q^2}{6C} \left( 1 – \frac{9}{16} \right) – \frac{Q^2}{32C} = \frac{1}{2} L I^2 $$ $$ \frac{Q^2}{C} \left( \frac{7}{96} – \frac{3}{96} \right) = \frac{1}{2} L I^2 \implies \frac{4 Q^2}{96 C} = \frac{1}{2} L I^2 $$
$$ I_{max} = \frac{Q}{\sqrt{12 LC}} = \frac{Q}{\sqrt{48 \pi \epsilon_0 r L}} $$